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1. Mental health

• Some key challenges identified in literature

• Heterogeneity of disorders
• Lack of biomarkers
• Subjective symptom reporting
• Categorical vs. dimensional issues

• Phenotype quantification difficulty

• A significant barrier in mental health research

• Current standard methods

• Primarily questionnaires and interviews

• Emerging alternative

• Daily life data, such as voice analysis

• Key advantages

• Non-invasive
• Objective
• Programmable
• Verifiable
• Scalable
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Definitions

• Emotion

• An episode of interrelated, synchronized changes in the states
of all or most of the five organismic subsystems in response to
the evaluation of an external or internal stimulus event as
relevant to major concerns of the organism (Scherer [2005])

• Emotional valence

• The positive or negative quality of an emotion
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• Main deliverable: Free tool for general audio analysis

• Free, open-source toolkit available on CRAN and GitHub

• Designed to streamline audio analysis by integrating music
theory and advanced computational techniques

• Based on

• UNIX’s ffmpeg, Homebrew, Miniconda, MuseScore, wget
• R’s gm, music, reticulate, tabr, tidyverse, tuneR, wrassp
• Python’s Parselmouth, pyannote-audio, pychord
• C’s Praat

https://cran.r-project.org/package=voice
https://github.com/filipezabala/voice
http://ffmpeg.org/
https://brew.sh/
https://docs.conda.io/en/latest/miniconda.html
https://musescore.org/
https://www.gnu.org/software/wget/
https://flujoo.github.io/gm/
https://cran.r-project.org/web/packages/music/index.html
https://rstudio.github.io/reticulate/
https://cran.r-project.org/web/packages/tabr/index.html
https://www.tidyverse.org/
https://cran.r-project.org/web/packages/tuneR/index.html
https://cran.r-project.org/web/packages/wrassp/index.html
https://github.com/YannickJadoul/Parselmouth
https://github.com/pyannote/pyannote-audio
https://github.com/yuma-m/pychord
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• tag attaches summarized audio features to datasets,
supporting anonymization and privacy-aware analysis

• diarize identifies speaker segments
• splitw splits the spoken parts into small blocks

• Novel contributions: Formant Removals

• Isolates fundamental frequency (F0) from formants
• Improves feature interpretability in models
• Preliminary results indicate Formant Removals among the

most important variables
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• Allows the use of music notation and theory (ongoing work)
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• Models achieve accuracy statistically superior to the No

Information Rate, the largest proportion of the observed classes
• RF and SVM consistently demonstrate strong performance

across all evaluated variables and quality measures
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Summary of SEX classification performance over 1,000 simulations
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Summary of EMOTIONAL VALENCE classif. performance over 1,000 simulations
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Thank you!

filipezabala.com

https://filipezabala.com
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