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1. Mental health

Definitions

® Emotion

® An episode of interrelated, synchronized changes in the states
of all or most of the five organismic subsystems in response to
the evaluation of an external or internal stimulus event as
relevant to major concerns of the organism (Scherer [2005])
® Emotional valence

® The positive or negative quality of an emotion
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e Context

® Vocal features extraction

® Audio files in various formats and quality levels
Technical

Labor-intensive

Code-heavy

® Methodology

® voice package — Model-ready dataset
User-friendly

Streamlined

Low-code
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e User-friendly functions
® extract_features builds data frames with state of art
features from multiple audio files
® tag attaches summarized audio features to datasets,
supporting anonymization and privacy-aware analysis
® diarize identifies speaker segments
® splitw splits the spoken parts into small blocks

® Novel contributions: Formant Removals

® Isolates fundamental frequency (FO) from formants

® Improves feature interpretability in models

® Preliminary results indicate Formant Removals among the
most important variables

® Allows the use of music notation and theory (ongoing work)
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® voice: A Comprehensive R Package for Audio Analysis
® Journal of Open Source Software (JOSS)
Published 30 July 2025
Presents the voice package
Statement of need, main features, and example applications
Highlights the package's performance and availability


https://joss.theoj.org/papers/10.21105/joss.08420
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1. Extract features

1.1 Load packages and audio files

# packs
library(voice)
library(tidyverse)

# get p o audio file
wavDir <- list.files(system.file('extdata', package = 'wrassp'),

pattern = glob2rx('*.wav'), full.names = TRUE)
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1.2 Extract features
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# minimal usage

M <- voice::extract_features(wavDir)

glimpse(M)

#> Rows: 1,196
#> Columns: 13
#> $ section_seq
#> $ section_seq_file
#> $ wav_path
# $ 0

# $ f1

# $ 2

# $ 13

# $ 4

# $ 5

# $ o

# $ 7

# $ 8

# $ gain

<int>
<int>
<chr>
<dbl>
<int>
<int>
<int>
<int>
<int>
<int>
<int>
<int>
<dbl>

1, 2, 3,4,5,6, 7,8 9, 10, 11, 12, 13, 14, 15, 16.
1, 2, 3, 4, 5, 6, 7, 8 9, 10, 11, 12, 13, 14, 15, 16.
"/Library/Frameworks/R. framework/Versions/4.5-armé64/R..
NA, NA, NA, NA, NA, NA, NA, 115.8593, 108.9439, 107.4..
NA, NA, NA, NA, 185, 260, 254, 277, 261, 231, 177, 19..

1854, 1886, 1749, 1888, 1962,

1973, 2026, 2037, 2130, ..

NA, 2893, 2676, 2659, 2639, 2676, 2993, 2932, 3016, 2.

3113, 3708,
4191, 4678,
5226, 5659, 5035,
6077, 6725, 6526, 6518, 6493,
6675, NA, NA, NA, 7681, 7751,
21.63347, 22.76034, 28.52825,

3509,
4502,

3658,
4331,
5177,

3248,
3653,
5208,

3239, 3830,
3836, 4602,
5146, 5233, 5390, 5366,..
6567, 6603, 6532, 6510,..
7803, NA, 7835, 7614, 7.
29.67069, 36.25124, 43...

3479,
4585,

3561, ...
4720, ...
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5. Diarize

# download
url® <- 'https://github.com/filipezabala/voiceAudios/raw/main/wav/sherlock®.wav’

wavDir <- normalizePath(tempdir())
- "wb")

download.file(url®, paste@(wavDir, '/sherlock®.wav'), mode
Diarization can be performed to detect speaker segments (i.e., ‘who spoke when’).

= "YOUR_TOKEN")

diarize(fromWav = wavDir, toRttm = wavDir, token

9933 secs

2 difference o

The voice: :diarize() function creates Rich Transcription Time Marked (R‘I'I'M)1 files, space-delimited text files
containing one turn per line defined by NIST - National Institute of Standards and Technology. The RTTM files

can be read using voice: : read_rttmQ).
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# read_rttm
(rttm <- voice::read_rttm(wavDir))
#> $doremi.rttm

#> type file chnl tbeg tdur ortho stype name conf slat

#> 1 SPEAKER doremi 1 0.031 5.805 <NA> <NA> SPEAKER_00 <NA> <NA>

#>

#> $sherlockd.rttm

#> type file chnl  tbeg tdur ortho stype name conf slat

#> 1 SPEAKER sherlock® 1 0.908 5.231 <NA> <NA> SPEAKER_00 <NA> <NA>

#> 2 SPEAKER sherlock® 1 6.933 6.463 <NA> <NA> SPEAKER_00 <NA> <NA>
#> 3 SPEAKER sherlock® 1 13.565 8.674 <NA> <NA> SPEAKER_00 <NA> <NA>

Finally, the audio waves can be automatically segmented.

# split audio wave

voice::splitw(fromWav = wavDir, fromRttm = wavDir, to = wavDir)

#> TOTAL TIME 0.262 SECONDS

dir(wavDir, pattern = '.[Ww][Aa][Vv]$")

#> [1] "doremi_split_1.wav" "doremi .wav" "sherlock0_split_1.wav"
#> [4] "sherlock@_split_2.wav" "sherlock@_split_3.wav" "sherlock®.wav"
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® Predicting sex and emotional valence automatically from voice

Submitted to Journal of Biomedical Informatics (JBI-Elsevier)
Historical remarks

RAVDESS and CREMA-D open datasets

Binary Logistic (BL), Support Vector Machines (SVM),
Random Forest (RF), and BART models

Models achieve accuracy statistically superior to the No
Information Rate, the largest proportion of the observed classes
RF and SVM consistently demonstrate strong performance
across all evaluated variables and quality measures

Emotional valence classification is feasible but may require
hyperparameter optimization
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PREDICTING SEX AND EMOTIONAL VALENCE AUTOMATICALLY FROM VOICE
CONTEXT METHODOLOGY MAIN OUTCOME

Vocal features voice Model-ready Prediction
extraction package dataset
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* Technical * User-friendly * Consistent performance
* Labor-intensive * Streamlined * Space to fine-tunning
» Code-heavy * Low-code * High accuracy

$
UFRGS

ZABALA, F.J. and SALUM, G.A. (2025). Journal of Biomedical Informatics. €

Graphical abstract
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RAVDESS CREMA-D
Rows/audios 1440 7442
Speakers 24 91
Language English English
Sex (M/F)

# 720/720  3930/3512

% 50,/50 52.8/47.2
Emotional Valence (—/+)

# 672/768 5084,/2358

% 53.3/46.7  68.3/31.7

Datasets summary
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Models
® BL - Binary Logistic
RF - Random Forests
SVM - Support Vector Machine
BART - Bayesian Additive Regression Trees

70%-30% train-test split
1,000 runs

9 quality measures evaluated

Results presented with Tukey's 5-number summary
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NIR: No Information Rate

® The largest proportion of the observed classes
® Smaller AccuracyPValue, stronger the hypothesis
Accuracy > NIR

Under Hp : Accuracy < NIR vs Hj : Accuracy > NIR,

AccuracyPValue = P(X > TP + TN|Accuracy = NIR)

n i n—i
=S (] NIRUL - NIR)
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Accuracy Sensitivity Specificity
50% 5% 25% 50% 75% 0% 25% 50% 75%

RAVDESS

BART 0.842 0.927 0. . 5 . 1.000 1.1 0.007 0.738 0.946 1.000
0.885 0.933 0. . . .967 0.992 1. 0.100 0.760 0.908 0.983
0.912 0.950 1. . . . 1.000 1. 0.106 0.820 0.938 0.994
0.792 0.842 0.96 . . . 0.953 1.4 0.319 0.690 0.812 0.906

0.907 0.929 0. . . . 0.978 1.4 0.179 0.859 0.931 0.974

0.910 0.928 0. . 1909 0.¢ 0.972 1. 0.479 0.844 0.903 0.944

0.934 0.948 0. X: . . 0.980 1. 0.548 0.897 0.940 0.972

0.905 0.922 0. .. . . 0.957 0.! 0.555 0.864 0.913 0.948
Pos Pred Value Pred Value F1

50% 75% 50% 75% 0% 25% 50% 75%

RAVDESS
BART 0.947 1.000 1. . . 0.972 1.000 1. 0.005 0.771 0.842
0.915 0.988 1. L .88 0.965 0.992 1.4 0.222 0.804 0.887

RF 3 0
SVM 0. . 0.938 0.996 1. . . 0.982 1.000 1. 0.107 0.832 0.916 0.953
BL 0.822 0.922 1. X X 0.868 0.958 1. 0.296 0.735 0.795 0.848

CREMA-D
BART 0. .861 0.937 0.978 1. . .837 0.934 0.978 1.4 0.864 0.910 0.932
0.915 0.957 0. .3 .883 . 0.971 1. 50 0.894 0.917 33
SVM 0.423 .894 0.947 0.978 1. .3 .9 0.979 1. 0.595 0.918 0.937
BL 0.439 0.865 0.922 0.959 1. . 5 0.9 0.957 0. 0.609 0.887 0.910

Detection Rate Kappa AccuracyPValue
5%  50% 75% 50% 75% 0% 25% 50% 75%

RAVDESS

BART 0.431 0.481 0. . . 0.689 0.854 0. 0.000 0.000 0.000 0.000
0.475 0.498 0. . . 0.760 0.863 0. 0.000 0.000 0.000 0.000
0.481 0.498 0.6 . .6 0.821 0.897 1. 0.000 0.000 0.000 0.000
0.410 0.448 0.56 .076 0.473 0.591 0.684 0. 0.000 0.000 0.000 0.000

0.492 0. . 1719 0.813 0. 0.9! 0.000 0.000 0.000 0.000
0.526 0. . .775 0.818 0. . 0.000 0.000 0.000 0.000
0.529 0. .. . 0.868 . 0.000 0.000 0.000 0.000
0.511 0.567 .. . 0.810 .94¢ 0.000 0.000 0.000 0.000

Summary of SEX classification performance over 1,000 simulations
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Accuracy Sensitivity Specificity
25% 50% 75% 25% 50% 75% 0% 25% 50%

0.698 0.717 0.735 0., 0.707 0.727 0.746 0., 0.536 0.674 0.705 0.737
0.698 0.719 0.738 0. 0.766 0.789 0.812 0., 0.442 0.603 0.638 0.674
0.710 0.731 0.748 0., . 0.789 0.812 0.832 0., 0.469 0.598 0.638 0.674
0.575 0.600 0.621 0. 0.574 0.602 0.625 0.70% 0.455 0.562 0.598 0.625

0.669 0.677 0.685 0. B 0.625 0.636 0.646 0. 0.645 0.751 0.766 0.781
0.731 0.736 0. . 0.935 0.944 0.952 0. 0.181 0.255 0.275 0.294
0.746 0.753 0. . 0.900 0.912 0.920 0. 0.309 0.376 0.393 0.409
0.601_0.645 0. . 0.581 0.607 0.661 0. 0.461 0.577 0.604 0.627

Pos Pred Value Neg Pred Value F1
25% 50% 75% 25% 50% 75% 0% 25% 50% 75%

0.717 0.739 0.760 0.83 0.583 0.673 0.693 0.712 0.7¢ 0.635 0.714 0.732 0.749 0.819
0.693 0.714 0.733 0., 0.596 0.701 0.724 0.747 0. 0.654 0.732 0.749 0.765 0.818
0.698 0.720 0.740 0., 0.635 0.724 0.747 0.768 0.853 0.685 0.746 0.762 0.776 0.825
0.605 0.629 0.653 0. 0.452 0.542 0.567 0.590 0. 0.484 0.592 0.615 0.637 0.711

0.846 0.854 0.862 0., 0.446 0.486 0.494 0.503 0.53¢ 0.682 0.721 0.729 0.736 0.766
0.732 0.736 0.741 0. .5 0.670 0.696 0.721 0. 0.810 0.824 0.827 0.830 0.846
0.759 0.763 0.768 0. . 0.654 0.673 0.695 0. 0.811 0.826 0.831 0.835 0.850
0.751 0.766 0.786 0., .. 0.394 0.413 0.456 0., 0.592 0.657 0.675 0.718 0.777

Detection Rate Kappa AccuracyPValue
25% 50% 75% o 25% 50% T5% 0% 25% 50% 75% 100%

RAVDESS
BART 0.377 0.388 0.398 0. .. 0.394 0.432 0.468 0. 0.000 0.000 0.000 0.000 0.001

RF 0. 0.408 0.421 0.433 0. . 0.389 0.430 0.469 0., 0.000 0.000 0.000 0.000 0.000
SVM 0.2 0.421 0.433 0.444 0. . 0.412 0.454 0.490 0.6 0.000 0.000 0.000 0.000 0.000
BL 0.306 0.321 0.333 0.3 . 0.147 0.198 0.239 1.000 1.000 1.000 1.000 1.000

CREMA-D
BART 0.426 0.434 0.441 0. . 0.336 0.350 0.364 0.419 0.000 0.403 0.714 0.922 1.000
RF 0. 0.638 0.644 0.650 0. . 0.277 0.362 0.377 0.36¢ 0.000 0.000 0.000 0.000 0.013
SVM 0., 0.615 0.622 0.628 0.6 1263 0.325 0.341 0.358 0.000 0.000 0.000 0.000 0.000
BL 0.397 0.414 0.452 0. .064 0.148 0.181 0.249 0.3 1.000 1.000 1.000 1.000 1.000

Summary of EMOTIONAL VALENCE classif. performance over 1,000 simulations
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Open-access code and data used in Zabala & Salum (2025) - Predicting sex and emotion valence automatically from voice
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&% OSF Storage
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B article2-cremad_public.R

B article2-ravdess_public.R

B C_cmstats_bart_w_emotion.csv

B C_cmstats_bart w_sex.csv

B. C cmstats bl w emotion.csv

1 Download

0 Downloads

1 Download

1 Download

1 Download
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Donate

° Filipe Zabala -

Add-ons  Linked services ~ Setting§)

Toggle view:

W Wiki Version: | (Current) Filipe Zabala: 2025-05-23 19:54:15+00:00 UTC

Four standardized open audio datasets, converted to wav mono via ffmpeg ~i fileOriginal ~ac 1 fileWaviono. If
you use this repository in your work, please consider requesting to add a link to your work in the 'Description: Articles
using this repository’ section of this webpage.

1.

AESDD

Vryzas et al (2018a)
Vryzas et al (2018b)
AESDD data

605 audio files

1 zip file (171.9 MB)

. CREMA-D

Caoetal. (2014)
CREMA-D data

7,442 audio files
1 zip file (1.1 GB)

. RAVDESS

Livingstone and Russo (2018)
RAVDESS data

7,356 audio files

1 zip file (217.6 MB)

https:/ /osf.io/9g73a/wiki/home/
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