5.3 Qui-quadrado
5.3.1 Qui-quadrado univariada \(\cdot \; \chi^2_\nu\)
5.3.2 Qui-quadrado bivariada
(Kotz, Balakrishnan, and Johnson 2000, 451) (Gunst and Webster 1973) (Amos and Bulgren 1972)
5.3.3 Qui-quadrado multivariada (Jensen)
(Kotz, Balakrishnan, and Johnson 2000, 471)
“The joint distribution of \(Y_1,\ldots,Y_k\) can be regarded as a multivariate chi-squared or, more generally (allowing \(\nu\) and the \(p_j\)’s to take fractional values), a multivariate gamma distribution.” (Kotz, Balakrishnan, and Johnson 2000, 474)
References
Amos, DE, and WG Bulgren. 1972. “Computation of a Multivariate f Distribution.” Mathematics of Computation 26 (117): 255–64. https://www.ams.org/journals/mcom/1972-26-117/S0025-5718-1972-0298881-9/S0025-5718-1972-0298881-9.pdf.
Gunst, Richard F, and John T Webster. 1973. “Density Functions of the Bivariate Chi-Square Distribution.” Journal of Statistical Computation and Simulation 2 (3): 275–88. http://dx.doi.org/10.1080/00949657308810052.
Kotz, Samuel, N Balakrishnan, and Norman L Johnson. 2000. “Continuous Multivariate Distributions. Vol. 1. Models and Applications.” Wiley-Interscience, New York.