Agresti, Alan. 2002. Categorical Data Analysis. Vol. 482. John Wiley & Sons.
Ah-Pine, Julien, and Xinyu Wang. 2016.
“Similarity Based Hierarchical Clustering with an Application to Text Collections.” In
Advances in Intelligent Data Analysis XV: 15th International Symposium, IDA 2016, Stockholm, Sweden, October 13-15, 2016, Proceedings 15, 320–31. Springer.
https://hal.science/hal-01504678/document.
AI, Google. 2023.
“Gemini: A Large Language Model from Google AI.” https://gemini.google.com/.
Akaike, Hirotugu. 1974. “A New Look at the Statistical Model Identification.” In Selected Papers of Hirotugu Akaike, 215–22. Springer.
Alain Hauser, and Peter Bühlmann. 2012.
“Characterization and Greedy Learning of Interventional Markov Equivalence Classes of Directed Acyclic Graphs.” Journal of Machine Learning Research 13: 2409–64.
https://jmlr.org/papers/v13/hauser12a.html.
Allaire, JJ, and François Chollet. 2021.
Keras: R Interface to ’Keras’.
https://keras.rstudio.com.
Alonzo, Izhar Asael, and Cristian Cruz. 2020. “varstan: An R Package for Bayesian Time Series Models with Stan.” ARXIV Preprint.
Amos, DE, and WG Bulgren. 1972.
“Computation of a Multivariate f Distribution.” Mathematics of Computation 26 (117): 255–64.
https://www.ams.org/journals/mcom/1972-26-117/S0025-5718-1972-0298881-9/S0025-5718-1972-0298881-9.pdf.
Anderson, Edgar. 1935. “The Irises of the Gaspe Peninsula.” Bull. Am. Iris Soc. 59: 2–5.
Ardia, David, and Lennart F Hoogerheide. 2010.
“Bayesian Estimation of the Garch (1, 1) Model with Student-t Innovations.” The R Journal 2 (2): 41–47.
https://journal.r-project.org/archive/2010/RJ-2010-014/RJ-2010-014.pdf.
Asimov, Daniel. 1985.
“The Grand Tour: A Tool for Viewing Multidimensional Data.” SIAM Journal on Scientific and Statistical Computing 6 (1): 128–43.
https://doi.org/10.1137/0906011.
Balcilar, Mehmet. 2019.
mFilter: Miscellaneous Time Series Filters.
https://CRAN.R-project.org/package=mFilter.
Bandara, Kasun, Rob J Hyndman, and Christoph Bergmeir. 2021.
“MSTL: A Seasonal-Trend Decomposition Algorithm for Time Series with Multiple Seasonal Patterns.” https://arxiv.org/abs/2107.13462.
Banerjee, Anindya, Juan J Dolado, John W Galbraith, and David Hendry. 1993. Co-Integration, Error Correction, and the Econometric Analysis of Non-Stationary Data. Oxford university press.
Bang-Jensen, Jørgen, and Gregory Z Gutin. 2008.
Digraphs: Theory, Algorithms and Applications. Springer Science & Business Media.
http://www.cs.rhul.ac.uk/books/dbook/mainNP.pdf.
Barrett, Tyson, Matt Dowle, Arun Srinivasan, Jan Gorecki, Michael Chirico, and Toby Hocking. 2024.
Data.table: Extension of ‘Data.frame‘.
https://CRAN.R-project.org/package=data.table.
Bauer, Jan O, and Bernhard Drabant. 2021.
“Principal Loading Analysis.” Journal of Multivariate Analysis 184: 104754.
https://arxiv.org/abs/2007.05215.
Baxter, Marianne, and Robert G King. 1999.
“Measuring Business Cycles: Approximate Band-Pass Filters for Economic Time Series.” Review of Economics and Statistics 81 (4): 575–93.
https://www.nber.org/system/files/working_papers/w5022/w5022.pdf.
Bayes, Thomas. 1763.
“An Essay Towards Solving a Problem in the Doctrine of Chances. By the Late Rev. Mr. Bayes, FRS Communicated by Mr. Price, in a Letter to John Canton, AMFR S.” Philosophical Transactions of the Royal Society of London, no. 53: 370–418.
https://www.ias.ac.in/article/fulltext/reso/008/04/0080-0088.
Beck, Christian, and Friedrich Schögl. 1993.
Thermodynamics of Chaotic Systems: An Introduction. Cambridge University Press.
https://ui.adsabs.harvard.edu/abs/1995tcs..book.....B%2F/abstract.
Behrendt, Simon, Thomas Dimpfl, Peter Franziska J., and Zimmermann David J. 2019.
“RTransferEntropy — Quantifying information flow between different time series using effective transfer entropy.” SoftwareX 10 (100265): 1–9.
https://doi.org/10.1016/j.softx.2019.100265.
Belsley, David A, Edwin Kuh, and Roy E Welsch. 2004. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. John Wiley & Sons.
Berg, Sven. 1996.
“Condorcet’s Jury Theorem and the Reliability of Majority Voting.” Group Decision and Negotiation 5 (3): 229–38.
https://link.springer.com/article/10.1007/BF02400945.
Berger, Roger L, and Jason C Hsu. 1996.
“Bioequivalence Trials, Intersection-Union Tests and Equivalence Confidence Sets.” Statistical Science, 283–302.
https://repository.lib.ncsu.edu/server/api/core/bitstreams/8f7d352b-645c-4887-8734-f9e757d78308/content.
Bishop, Christopher M. 1999.
“Bayesian PCA.” In
Advances in Neural Information Processing Systems, 382–88.
https://papers.nips.cc/paper/1549-bayesian-pca.pdf.
Blei, David M, Andrew Y Ng, and Michael I Jordan. 2003.
“Latent Dirichlet Allocation.” Journal of Machine Learning Research 3 (Jan): 993–1022.
https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf.
Bloomfield, Peter. 1976. Fourier Analysis of Time Series: An Introduction. John Wiley & Sons.
Bolla, Marianna, and Tamás Szabados. 2021. Multidimensional Stationary Time Series: Dimension Reduction and Prediction. Chapman; Hall/CRC.
Bollerslev, Tim. 1986.
“Generalized Autoregressive Conditional Heteroskedasticity.” Journal of Econometrics 31 (3): 307–27.
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7da8bfa5295375c1141d797e80065a599153c19d.
Bossomaier, Terry, Lionel Barnett, Michael Harré, Joseph T Lizier, Terry Bossomaier, Lionel Barnett, Michael Harré, and Joseph T Lizier. 2016.
An Introduction to Transfer Entropy. Springer.
https://link.springer.com/content/pdf/10.1007/978-3-319-43222-9_4.pdf.
Bøttcher, Susanne Gammelgaard, and Claus Dethlefsen. 2022.
Deal: Learning Bayesian Networks with Mixed Variables.
https://CRAN.R-project.org/package=deal.
Box, George E. P., and Gwilym M. Jenkins. 1970.
Time Series Analysis: Forecasting and Control. John Wiley & Sons.
https://elib.vku.udn.vn/bitstream/123456789/2536/1/1994.%20Time%20Series%20Analysis-Forecasting%20and%20Control.pdf.
Box, George E. P., Gwilym M. Jenkins, and Gregory C. Reinsel. 2008. Time Series Analysis: Forecasting and Control. 4th ed. John Wiley & Sons.
Box, George E. P., and David A. Pierce. 1970.
“Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models.” Journal of the American Statistical Association 65 (332): 1509–26.
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7cd4e19b3eeecf086574969a2cc9d5a4b987275b.
Box, George EP. 1949.
“A General Distribution Theory for a Class of Likelihood Criteria.” Biometrika 36 (3/4): 317–46.
https://www.jstor.org/stable/pdf/2332671.pdf.
———. 1950. “Problems in the Analysis of Growth and Wear Curves.” Biometrics 6 (4): 362–89.
———. 1979.
“Robustness in the Strategy of Scientific Model Building.” In
Robustness in Statistics, 201–36. Elsevier.
https://apps.dtic.mil/sti/pdfs/ADA070213.pdf.
Box, George EP, and David R Cox. 1964.
“An Analysis of Transformations.” Journal of the Royal Statistical Society Series B: Statistical Methodology 26 (2): 211–43.
http://www.econ.uiuc.edu/~econ508/Papers/boxcox64.pdf.
Box, George EP, and George C Tiao. 1973. Bayesian Inference in Statistical Analysis. John Wiley & Sons.
Breiman, Leo. 1996a.
“Bagging Predictors.” Machine Learning 24 (2): 123–40.
https://link.springer.com/content/pdf/10.1007/BF00058655.pdf.
———. 1996b.
“Bias, Variance, and Arcing Classifiers.” University of
California,
Berkeley.
https://www.stat.berkeley.edu/users/breiman/arcall96.pdf.
———. 1996c.
“Heuristics of Instability and Stabilization in Model Selection.” The Annals of Statistics 24 (6): 2350–83.
https://www.jstor.org/stable/2242688.
Breiman, Leo, Jerome Friedman, Charles J Stone, and Richard A Olshen. 1984. Classification and Regression Trees. CRC press.
Brown, Lawrence D, George Casella, and Gene JT Hwang. 1995.
“Optimal Confidence Sets, Bioequivalence, and the Limacon of Pascal.” Journal of the American Statistical Association 90 (431): 880–89.
https://ecommons.cornell.edu/server/api/core/bitstreams/701b0d66-f0ea-4c99-86e1-f9ae3c39a88a/content.
Brown, Robert G. 1956.
Exponential Smoothing for Predicting Demand. Arthur D. Little Inc. - Massachusetts.
https://www.industrydocuments.ucsf.edu/docs/jzlc0130.
———. 1959. “Statistical Forecasting for Inventory Control.” McGraw-Hill.
Bryson Jr, Arthur E, Walter F Denham, and Stewart E Dreyfus. 1963.
“Optimal Programming Problems with Inequality Constraints I: Necessary Conditions for Extremal Solutions.” AIAA Journal 1 (11): 2544–50.
https://doi.org/10.2514/3.2107.
Buchta, Christian, and Michael Hahsler. 2019.
Cba: Clustering for Business Analytics.
https://CRAN.R-project.org/package=cba.
Burnham, Kenneth P, and David R Anderson. 2004.
“Multimodel Inference: Understanding AIC and BIC in Model Selection.” Sociological Methods & Research 33 (2): 261–304.
http://www.sortie-nd.org/lme/Statistical%20Papers/Burnham_and_Anderson_2004_Multimodel_Inference.pdf.
Butterworth, Stephen et al. 1930.
“On the Theory of Filter Amplifiers.” Wireless Engineer 7 (6): 536–41.
https://www.changpuak.ch/electronics/downloads/On_the_Theory_of_Filter_Amplifiers.pdf.
Campbell, JT. 1934.
“The Poisson Correlation Function.” Proceedings of the Edinburgh Mathematical Society 4 (1): 18–26.
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0013091500024135.
Canova, Fabio, and Bruce E Hansen. 1995.
“Are Seasonal Patterns Constant over Time? A Test for Seasonal Stability.” Journal of Business & Economic Statistics 13 (3): 237–52.
https://www.jstor.org/stable/pdf/1392184.pdf.
Cardot, Hervé. 2021.
Gmedian: Geometric Median, k-Medians Clustering and Robust Median PCA.
https://CRAN.R-project.org/package=Gmedian.
Cardot, Hervé, Peggy Cénac, and Jean-Marie Monnez. 2012.
“A Fast and Recursive Algorithm for Clustering Large Datasets with k-Medians.” Computational Statistics & Data Analysis 56 (6): 1434–49.
https://doi.org/10.1016/j.csda.2011.11.019.
Cardot, Hervé, Peggy Cénac, Pierre-André Zitt, et al. 2013.
“Efficient and Fast Estimation of the Geometric Median in Hilbert Spaces with an Averaged Stochastic Gradient Algorithm.” Bernoulli 19 (1): 18–43.
https://projecteuclid.org/download/pdfview_1/euclid.bj/1358531739.
Caro, Angela, Antonio Elias, Daniel Peña, and Ruey S. Tsay. 2022.
SLBDD: Statistical Learning for Big Dependent Data.
https://CRAN.R-project.org/package=SLBDD.
Casdagli, Martin. 1992.
“Chaos and Deterministic Versus Stochastic Non-Linear Modelling.” Journal of the Royal Statistical Society: Series B (Methodological) 54 (2): 303–28.
https://sfi-edu.s3.amazonaws.com/sfi-edu/production/uploads/sfi-com/dev/uploads/filer/0c/a9/0ca97a96-090c-4eac-ba4e-0bd03f130ac4/91-07-029.pdf.
Casella, George, and Jiunn Tzon Hwang. 1983.
“Empirical Bayes Confidence Sets for the Mean of a Multivariate Normal Distribution.” Journal of the American Statistical Association 78 (383): 688–98.
https://ecommons.cornell.edu/server/api/core/bitstreams/0e03953b-d2dc-4703-92d0-49ea93adfa30/content.
Cattell, Raymond B. 1966.
“The Scree Test for the Number of Factors.” Multivariate Behavioral Research 1 (2): 245–76.
https://doi.org/10.1207/s15327906mbr0102_10.
Census, United States. Bureau of the. 1975.
Statistical Abstract of the United States, 1975. Hoover’s.
https://books.google.ch/books?id=zl9qAAAAMAAJ&pg=PA20#v=onepage&q&f=false.
Chambers, John M, William S Cleveland, Beat Kleiner, and Paul A Tukey. 1998.
Graphical Methods for Data Analysis. 2nd ed. Chapman; Hall/CRC.
https://www.taylorfrancis.com/books/mono/10.1201/9781351072304/graphical-methods-data-analysis-chambers.
Chambers, John M., and Trevor J. Hastie. 1993. Statistical Models in S. Chapman & Hall, London.
Chan, Kung-Sik, and Brian Ripley. 2022.
TSA: Time Series Analysis.
https://CRAN.R-project.org/package=TSA.
Chatterjee, Samprit, and Ali S Hadi. 2012. Regression Analysis by Example. John Wiley & Sons.
Chen, Chung, and Lon-Mu Liu. 1993.
“Joint Estimation of Model Parameters and Outlier Effects in Time Series.” Journal of the American Statistical Association 88 (421): 284–97.
https://wiki.cecm.usp.br/~felipeh/2290724.pdf.
Chew, Victor. 1966.
“Confidence, Prediction, and Tolerance Regions for the Multivariate Normal Distribution.” Journal of the American Statistical Association 61 (315): 605–17.
https://www.tandfonline.com/doi/ref/10.1080/01621459.1966.10480892.
Christiano, Lawrence J, and Terry J Fitzgerald. 2003.
“The Band Pass Filter.” International Economic Review 44 (2): 435–65.
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1468-2354.t01-1-00076.
Cleveland, Robert B, William S Cleveland, Jean E McRae, Irma Terpenning, et al. 1990.
“STL: A Seasonal-Trend Decomposition.” Journal of Official Statistics 6 (1): 3–73.
https://www.nniiem.ru/file/news/2016/stl-statistical-model.pdf.
Cobb, George W. 1978.
“The problem of the Nile: Conditional solution to a changepoint problem.” Biometrika 65 (2): 243–51.
https://doi.org/10.1093/biomet/65.2.243.
Cody, William J. 1988.
“Algorithm 665: Machar: A Subroutine to Dynamically Determined Machine Parameters.” ACM Transactions on Mathematical Software (TOMS) 14 (4): 303–11.
https://doi.org/10.1145/50063.51907.
Condorcet, Marquis de. 1785.
Essai Sur l’application de l’analyse à La Probabilité Des Décisions Rendues à La Pluralité Des Voix.
Paris, Imprimerie Royale.
https://archive.org/details/essaisurlapplica00cond/page/n6.
Cooley, James W, and John W Tukey. 1965.
“An Algorithm for the Machine Calculation of Complex Fourier Series.” Mathematics of Computation 19 (90): 297–301.
https://doi.org/10.1090%2FS0025-5718-1965-0178586-1.
Cortes, Corinna, and Vladimir Vapnik. 1995.
“Support-Vector Networks.” Machine Learning 20 (3): 273–97.
https://link.springer.com/article/10.1007/BF00994018.
Cortez, Paulo, and Anı́bal de Jesus Raimundo Morais. 2007.
“A Data Mining Approach to Predict Forest Fires Using Meteorological Data.” http://www3.dsi.uminho.pt/pcortez/fires.pdf.
Cramer, Jan Salomon. 2002.
“The Origins of Logistic Regression.” https://www.econstor.eu/bitstream/10419/86100/1/02119.pdf.
Cybenko, George. 1989.
“Approximation by Superpositions of a Sigmoidal Function.” Mathematics of Control, Signals and Systems 2 (4): 303–14.
http://www.vision.jhu.edu/teaching/learning/deeplearning18/assets/Cybenko-89.pdf.
Dagum, Estela Bee, and Silvia Bianconcini. 2016.
Seasonal Adjustment Methods and Real Time Trend-Cycle Estimation. Springer.
http://ndl.ethernet.edu.et/bitstream/123456789/64243/1/389.pdf.
Daniell, Percy John. 1946. “Discussion on Symposium on Autocorrelation in Time Series.” Journal of the Royal Statistical Society 8 (1).
De Livera, Alysha M, Rob J Hyndman, and Ralph D Snyder. 2011.
“Forecasting Time Series with Complex Seasonal Patterns Using Exponential Smoothing.” Journal of the American Statistical Association 106 (496): 1513–27.
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f3de25596ab60ef0e886366826bf58a02b35a44f.
DeepSeek. 2023.
“DeepSeek-V3: Artificial Intelligence Language Model.” https://www.deepseek.com.
Dethlefsen, Claus, and Søren Højsgaard. 2005.
“A Common Platform for Graphical Models in R: The gRbase Package.” Journal of Statistical Software 14 (17): 1–12.
https://www.jstatsoft.org/v14/i17/.
Diggle, Peter J. 1990.
Time Series: A Biostatistical Introduction. Oxford University Press.
https://academic.oup.com/book/53018.
Dimpfl, Thomas, and Franziska Julia Peter. 2013.
“Using Transfer Entropy to Measure Information Flows Between Financial Markets.” Studies in Nonlinear Dynamics and Econometrics 17 (1): 85–102.
https://edoc.hu-berlin.de/server/api/core/bitstreams/55ce7125-b018-45f7-bad5-dd9a1339af5d/content.
Dokumentov, Alexander, and Rob J Hyndman. 2022.
“STR: Seasonal-Trend Decomposition Using Regression.” INFORMS Journal on Data Science 1 (1): 50–62.
https://robjhyndman.com/publications/str/.
Douc, Randal, Eric Moulines, and David Stoffer. 2014. Nonlinear Time Series: Theory, Methods and Applications with r Examples. CRC press.
Dua, Dheeru, and Casey Graff. 2019.
“UCI Machine Learning Repository.” University of California, Irvine, School of Information; Computer Sciences.
http://archive.ics.uci.edu/ml.
Duda, Richard O, Peter E Hart, and David G Stork. 2001. Pattern Classification. John Wiley & Sons, Inc.
Dunsmuir, William T. M., and David J. Scott. 2015.
“The glarma Package for Observation-Driven Time Series Regression of Counts.” Journal of Statistical Software 67 (7): 1–36.
https://doi.org/10.18637/jss.v067.i07.
Durbin, James. 1960.
“The Fitting of Time-Series Models.” Revue de l’Institut International de Statistique, 233–44.
https://repository.lib.ncsu.edu/server/api/core/bitstreams/574e3264-2014-487c-9129-37ae4bea7d9e/content.
Durbin, James, and Siem Jan Koopman. 2012. Time Series Analysis by State Space Methods. Vol. 38. OUP Oxford.
Efroymson, MA. 1960. “Multiple Regression Analysis.” Mathematical Methods for Digital Computers, 191–203.
Enders, Walter. 2014. Applied Econometric Time Series. 4th ed. Wiley Series in Probability and Statistics.
Engle, Robert. 2002.
“Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models.” Journal of Business & Economic Statistics 20 (3): 339–50.
https://www.bayes.city.ac.uk/__data/assets/pdf_file/0003/78960/Week7Engle_2002.pdf.
Engle, Robert F. 1982.
“Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation.” Econometrica: Journal of the Econometric Society, 987–1007.
http://www.econ.uiuc.edu/~econ508/Papers/engle82.pdf.
Engle, Robert F, and Tim Bollerslev. 1986.
“Modelling the Persistence of Conditional Variances.” Econometric Reviews 5 (1): 1–50.
https://doi.org/10.1080/07474938608800095.
Engle, Robert F, and Clive WJ Granger. 1987.
“Co-Integration and Error Correction: Representation, Estimation, and Testing.” Econometrica: Journal of the Econometric Society, 251–76.
https://www.jstor.org/stable/1913236.
Engle Robert, F, and Sheppard Kevin. 2001.
“Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH.” UCSD Working Paper NO.
https://www.nber.org/system/files/working_papers/w8554/w8554.pdf.
Everitt, Brian. 2005. An r and s-PLUS Companion to Multivariate Analysis. Springer.
Everitt, Brian S, and Anders Skrondal. 2006.
“The Cambridge Dictionary of Statistics.” https://www.cambridge.org/9780521766999.
Fabio Di Narzo, Antonio, Jose Luis Aznarte, and Matthieu Stigler. 2024. tsDyn: Time Series Analysis Based on Dynamical Systems Theory.
Farrar, Donald E, and Robert R Glauber. 1967.
“Multicollinearity in Regression Analysis: The Problem Revisited.” The Review of Economic and Statistics, 92–107.
https://www.jstor.org/stable/pdf/1937887.pdf.
Fife, Dustin. 2024.
Flexplavaan: Visualizing Latent Variable Models Using Flexplot.
https://github.com/dustinfife/flexplavaan.
Fife, Dustin A, Steven M Brunwasser, and Edgar C Merkle. 2022.
“Seeing the Impossible: Visualizing Latent Variable Models with Flexplavaan.” Psychological Methods.
https://doi.org/10.31234/osf.io/qm7kj.
Fisher, N. I., and P. Switzer. 1985.
“Chi-Plots for Assessing Dependence.” Biometrika 72 (2): 253–65.
https://www.jstor.org/stable/2336078.
———. 2001.
“Graphical Assessment of Dependence: Is a Picture Worth 100 Tests?” The American Statistician 55 (3): 233–39.
https://doi.org/10.1198/000313001317098248.
Fisher, Ronald A. 1922.
“On the Mathematical Foundations of Theoretical Statistics.” Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character 222 (594-604): 309–68.
https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.1922.0009.
———. 1936.
“The Use of Multiple Measurements in Taxonomic Problems.” Annals of Eugenics 7 (2): 179–88.
http://rcs.chemometrics.ru/Tutorials/classification/Fisher.pdf.
———. 1938.
“The Statistical Utilization of Multiple Measurements.” Annals of Eugenics 8 (4): 376–86.
https://digital.library.adelaide.edu.au/dspace/bitstream/2440/15232/1/155.pdf.
———. 1940.
“The Precision of Discriminant Functions.” Annals of Eugenics 10 (1): 422–29.
https://hekyll.services.adelaide.edu.au/dspace/bitstream/2440/15240/1/175.pdf.
Fokoue, E. 2020.
“Speaker Accent Recognition Data Set.” University of California, Irvine, School of Information; Computer Sciences.
https://archive.ics.uci.edu/ml/datasets/Speaker+Accent+Recognitions.
Fonseca, T. C. O., V. S. Cerqueira, H. S. Migon, and C. A. C. Torres. 2019.
“The Effects of Degrees of Freedom Estimation in the Asymmetric GARCH Model with Student-t Innovations.” https://arxiv.org/abs/1910.01398.
Forgy, Edward W. 1965. “Cluster Analysis of Multivariate Data: Efficiency Versus Interpretability of Classifications.” Biometrics 21: 768–69.
Foster, Jason. 2020.
Roll: Rolling and Expanding Statistics.
https://CRAN.R-project.org/package=roll.
Fourier, Jean Baptiste Joseph. 1822.
Théorie Analytique de La Chaleur. Vol. 1. Gauthier-Villars.
https://archive.org/details/bub_gb_TDQJAAAAIAAJ.
———. 1878.
The Analytical Theory of Heat (English Translation by Alexander Freeman). The University Press.
https://archive.org/details/analyticaltheory00fourrich/mode/2up.
Francq, Christian, and Jean-Michel Zakoian. 2010. GARCH Models: Structure, Statistical Inference and Financial Applications. John Wiley & Sons.
Freund, Yoav, and Robert E Schapire. 1997.
“A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting.” Journal of Computer and System Sciences 55 (1): 119–39.
https://www.sciencedirect.com/science/article/pii/S002200009791504X/pdf?md5=e471323f84c2764746c94ba206a9bc47&pid=1-s2.0-S002200009791504X-main.pdf&_valck=1.
Freund, Yoav, and Robert E. Schapire. 1996.
“Experiments with a New Boosting Algorithm.” In
Icml, 96:148–56. Citeseer.
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.6252&rep=rep1&type=pdf.
Friedman, Jerome H, and Werner Stuetzle. 1981.
“Projection Pursuit Regression.” Journal of the American Statistical Association 76 (376): 817–23.
https://doi.org/10.2307/2287576.
Friedman, Jerome H, and John W Tukey. 1974.
“A Projection Pursuit Algorithm for Exploratory Data Analysis.” IEEE Transactions on Computers 100 (9): 881–90.
https://ieeexplore.ieee.org/document/1672644/.
Friedman, Milton. 1937.
“The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance.” Journal of the American Statistical Association 32 (200): 675–701.
https://sci2s.ugr.es/keel/pdf/algorithm/articulo/1937-JSTOR-Friedman.pdf.
Friendly, Michael, John Fox, and Phil Chalmers. 2024.
Matlib: Matrix Functions for Teaching and Learning Linear Algebra and Multivariate Statistics.
https://CRAN.R-project.org/package=matlib.
Galanos, Alexios. 2023.
Rugarch: Univariate GARCH Models.
https://cran.r-project.org/package=rugarch.
Genz, Alan. 1992.
“Numerical Computation of Multivariate Normal Probabilities.” Journal of Computational and Graphical Statistics 1 (2): 141–49.
https://doi.org/10.2307/1390838.
Genz, Alan, and Frank Bretz. 2009. Computation of Multivariate Normal and t Probabilities. Lecture Notes in Statistics. Heidelberg: Springer-Verlag.
Genz, Alan, Frank Bretz, Tetsuhisa Miwa, Xuefei Mi, Friedrich Leisch, Fabian Scheipl, and Torsten Hothorn. 2021.
mvtnorm: Multivariate Normal and t Distributions.
https://CRAN.R-project.org/package=mvtnorm.
Glur, Christoph. 2020.
Data.tree: General Purpose Hierarchical Data Structure.
https://CRAN.R-project.org/package=data.tree.
Goerg, Georg M. 2013.
“Forecastable Component Analysis.” In
JMLR, w&CP, 28:64–72.
https://proceedings.mlr.press/v28/goerg13.pdf.
———. 2020. ForeCA: An r Package for Forecastable Component Analysis.
Goldberg, Kenneth M, and Boris Iglewicz. 1992.
“Bivariate Extensions of the Boxplot.” Technometrics 34 (3): 307–20.
https://www.jstor.org/stable/1270037.
González, Ignacio, and Sébastien Déjean. 2021.
CCA: Canonical Correlation Analysis.
https://CRAN.R-project.org/package=CCA.
Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016.
Deep Learning.
MIT Press.
http://www.deeplearningbook.org.
Gould, Stephen Jay, Ana Luı́sa de Hurbano Seco Coelho, and Jorge Rocha. 1991. A Falsa Medida Do Homem. Livraria Martins Fontes Editora LTDA.
Granger, Clive WJ. 1969.
“Investigating Causal Relations by Econometric Models and Cross-Spectral Methods.” Econometrica: Journal of the Econometric Society, 424–38.
https://www.jstor.org/stable/1912791.
Granger, Clive WJ, and Roselyne Joyeux. 1980.
“An Introduction to Long-Memory Time Series Models and Fractional Differencing.” Journal of Time Series Analysis 1 (1): 15–29.
https://doi.org/10.1111/j.1467-9892.1980.tb00297.x.
Guha, Sudipto, Rajeev Rastogi, and Kyuseok Shim. 1998.
“CURE: An efficient clustering algorithm for large databases.” ACM Sigmod Record 27 (2): 73–84.
https://dl.acm.org/doi/pdf/10.1145/276305.276312.
———. 2000.
“ROCK: A Robust Clustering Algorithm for Categorical Attributes.” Information Systems 25 (5): 345–66.
https://doi.org/10.1016/S0306-4379(00)00022-3.
Gunst, Richard F, and John T Webster. 1973.
“Density Functions of the Bivariate Chi-Square Distribution.” Journal of Statistical Computation and Simulation 2 (3): 275–88.
http://dx.doi.org/10.1080/00949657308810052.
Gurajala, Ramakrishna, Praveen B Choppala, James Stephen Meka, and Paul D Teal. 2021.
“Derivation of the Kalman Filter in a Bayesian Filtering Perspective.” In
2021 2nd International Conference on Range Technology (ICORT), 1–5. IEEE.
https://www.jamesstephen.in/papers/8.pdf.
Hanck, Christoph, Martin Arnold, Alexander Gerber, and Martin Schmelzer. 2024.
Introduction to Econometrics with r. Universit
ät Duisburg-Essen.
https://www.econometrics-with-r.org/.
Hannan, Edward J, William TM Dunsmuir, and Manfred Deistler. 1980.
“Estimation of Vector ARMAX Models.” Journal of Multivariate Analysis 10 (3): 275–95.
https://doi.org/10.1016/0047-259X(80)90050-0.
Hartigan, John A. 1975. Clustering Algorithms. John Wiley & Sons, Inc.
Hartigan, John A, and Manchek A Wong. 1979.
“Algorithm AS 136: A k-Means Clustering Algorithm.” Journal of the Royal Statistical Society. Series C (Applied Statistics) 28 (1): 100–108.
https://www.labri.fr/perso/bpinaud/userfiles/downloads/hartigan_1979_kmeans.pdf.
Harvey, Andrew C. 1989. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press.
———. 1993.
Time series models, second edition. Harvester-Wheatsheaf, New York.
https://ideas.repec.org/a/eee/intfor/v9y1993i4p582-583.html.
Harvey, Andrew C, and Simon Peters. 1990.
“Estimation Procedures for Structural Time Series Models.” Journal of Forecasting 9 (2): 89–108.
http://www.stat.yale.edu/~lc436/papers/Harvey_Peters1990.pdf.
Haslett, John, and Adrian E Raftery. 1989.
“Space-Time Modelling with Long-Memory Dependence: Assessing Ireland’s Wind Power Resource.” Journal of the Royal Statistical Society: Series C (Applied Statistics) 38 (1): 1–21.
https://sites.stat.washington.edu/people/raftery/Research/PDF/haslett1989.pdf.
Hastie, Trevor, and Robert Tibshirani. 1986. “[Generalized Additive Models]: Comment.” Statistical Science 1 (3): 297–318.
Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009.
The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Science & Business Media.
https://web.stanford.edu/~hastie/Papers/ESLII.pdf.
Helske, Jouni. 2017.
“KFAS: Exponential Family State Space Models in R.” Journal of Statistical Software 78 (10): 1–39.
https://doi.org/10.18637/jss.v078.i10.
Hinton, Geoffrey. 2022.
“The Forward-Forward Algorithm: Some Preliminary Investigations.” arXiv Preprint arXiv:2212.13345.
https://arxiv.org/pdf/2212.13345.
Hodrick, Robert J, and Edward C Prescott. 1997.
“Postwar US Business Cycles: An Empirical Investigation.” Journal of Money, Credit, and Banking, 1–16.
https://www.jstor.org/stable/pdf/2953682.pdf.
Højsgaard, Søren. 2012.
“Graphical Independence Networks with the gRain Package for R.” Journal of Statistical Software 46 (10): 1–26.
https://doi.org/10.18637/jss.v046.i10.
Holgate, Philip. 1964.
“Estimation for the Bivariate Poisson Distribution.” Biometrika 51 (1-2): 241–87.
https://www.jstor.org/stable/pdf/2334210.pdf.
Holt, Charles C. 1957.
“Forecasting Seasonals and Trends by Exponentially Weighted Moving Averages (Reprinted Version 2004).” International Journal of Forecasting 20 (1): 5–10.
https://doi.org/10.1016/j.ijforecast.2003.09.015.
Hornik, Kurt, Christian Buchta, and Achim Zeileis. 2009.
“Open-Source Machine Learning: R Meets Weka.” Computational Statistics 24 (2): 225–32.
https://doi.org/10.1007/s00180-008-0119-7.
Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. 1989.
“Multilayer Feedforward Networks Are Universal Approximators.” Neural Networks 2 (5): 359–66.
https://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2016/notes/Sonia_Hornik.pdf.
Hosking, J. R. M. 1981.
“Fractional Differencing.” Biometrika 68 (1): 165–76.
https://www.ma.imperial.ac.uk/~ejm/M3S8/Problems/hosking81.pdf.
Hotelling, Harold. 1931.
“The Generalization of Student’s Ratio.” The Annals of Mathematical Statistics Vol. 2 (Number 3).
https://doi.org/10.1214/aoms/1177732979.
———. 1933.
“Analysis of a Complex of Statistical Variables into Principal Components.” Journal of Educational Psychology 24 (6): 417.
https://psycnet.apa.org/fulltext/1934-00645-001.pdf.
———. 1935.
“The Most Predictable Criterion.” Journal of Educational Psychology 26 (2): 139.
https://psycnet.apa.org/doi/10.1037/h0058165.
Huang, Zhexue. 1997.
“A Fast Clustering Algorithm to Cluster Very Large Categorical Data Sets in Data Mining.” DMKD 3 (8): 34–39.
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.134.83&rep=rep1&type=pdf.
Hyndman, Rob. 2020.
Fpp2: Data for "Forecasting: Principles and Practice" (2nd Edition).
https://CRAN.R-project.org/package=fpp2.
———. 2021.
Fpp3: Data for "Forecasting: Principles and Practice" (3rd Edition).
https://CRAN.R-project.org/package=fpp3.
Hyndman, Rob J. 2010.
“The ARIMAX Model Muddle.” https://robjhyndman.com/.
https://robjhyndman.com/hyndsight/arimax/.
Hyndman, Rob J., and George Athanasopoulos. 2018.
Forecasting: Principles and Practice, 2nd Ed. OTexts.
https://otexts.com/fpp2/.
———. 2021.
Forecasting: Principles and Practice, 3rd Ed. OTexts.
https://otexts.com/fpp3/.
Hyndman, Rob J, and Yeasmin Khandakar. 2008.
“Automatic Time Series Forecasting: The Forecast Package for R.” Journal of Statistical Software 27 (3): 1–22.
https://doi.org/10.18637/jss.v027.i03.
Hyndman, Rob J, Earo Wang, and Nikolay Laptev. 2024.
Anomalous: Unusual Time Series Detection.
https://github.com/robjhyndman/anomalous.
Hyndman, Rob, George Athanasopoulos, Christoph Bergmeir, Gabriel Caceres, Leanne Chhay, Mitchell O’Hara-Wild, Fotios Petropoulos, Slava Razbash, Earo Wang, and Farah Yasmeen. 2024.
forecast: Forecasting Functions for Time Series and Linear Models.
https://pkg.robjhyndman.com/forecast/.
Hyndman, Rob, Anne B Koehler, J Keith Ord, and Ralph D Snyder. 2008.
Forecasting with Exponential Smoothing: The State Space Approach. Springer Science & Business Media.
https://robjhyndman.com/expsmooth/.
Hyndman, Rob, Alan Lee, Earo Wang, and Shanika Wickramasuriya. 2024.
Hts: Hierarchical and Grouped Time Series.
https://CRAN.R-project.org/package=hts.
Hyndman, Rob, and Yangzhuoran Yang. 2024.
Tsdl: Time Series Data Library.
https://github.com/FinYang/tsdl.
Imdad, M. U., M. Aslam, S. Altaf, and A. Munir. 2019.
“Some New Diagnostics of Multicollinearity in Linear Regression Model.” Sains Malaysiana 48(9): 2051–60.
http://dx.doi.org/10.17576/jsm-2019-4809-26.
Izbicki, Rafael, and Tiago Mendonça dos Santos. 2020.
Aprendizado de Máquina: Uma Abordagem Estatística.
http://www.rizbicki.ufscar.br/ame/.
Jizba, Petr, Hagen Kleinert, and Mohammad Shefaat. 2012.
“Rényi’s Information Transfer Between Financial Time Series.” Physica A: Statistical Mechanics and Its Applications 391 (10): 2971–89.
https://doi.org/10.1016/j.physa.2011.12.064.
Johnson, Norman Lloyd, Samuel Kotz, and Narayanaswamy Balakrishnan. 1997. Discrete Multivariate Distributions. John Wiley & Sons, Inc.
Johnson, Richard A., and Dean W. Wichern. 1998.
Applied Multivariate Statistical Analysis. Prentice Hall Upper Saddle River, New Jersey.
http://primo-pmtna01.hosted.exlibrisgroup.com/PUC01:PUC01:puc01000172245.
Jones, M Chris, and Robin Sibson. 1987.
“What Is Projection Pursuit?” Journal of the Royal Statistical Society: Series A (General) 150 (1): 1–18.
https://doi.org/10.2307/2981662.
Jordan, Camille. 1875.
“Essai Sur La géométrie à \(n\) Dimensions.” Bulletin de La Société Mathématique de France 3: 103–74.
https://doi.org/10.24033/bsmf.90.
Kałędkowski, Dawid. 2024.
Runner: Running Operations for Vectors.
https://CRAN.R-project.org/package=runner.
Kálmán, RE. 1960.
“A New Approach to Linear Filtering and Prediction Problems.” Journal of Basic Engineering 82 (1): 35–45.
https://doi.org/10.1115/1.3662552.
Kálmán, Rudolph E, and Richard S Bucy. 1961.
“New Results in Linear Filtering and Prediction Theory.” https://people.duke.edu/~hpgavin/SystemID/References/KalmanBucy-ASME-JBE-1961.pdf.
Karas, Marta, and Jacek Urbanek. 2019.
Runstats: Fast Computation of Running Statistics for Time Series.
https://CRAN.R-project.org/package=runstats.
Karlis, Dimitris, and Ioannis Ntzoufras. 2003.
“Analysis of Sports Data by Using Bivariate Poisson Models.” Journal of the Royal Statistical Society: Series D (The Statistician) 52 (3): 381–93.
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/1467-9884.00366.
Kawamura, Kazutomo. 1984.
“Direct Calculation of Maximum Likelihood Estimator for the Bivariate Poisson Distribution.” Kodai Mathematical Journal 7 (2): 211–21.
https://www.jstage.jst.go.jp/article/kodaimath1978/7/2/7_2_211/_pdf.
Kendall, Maurice George, and Alan Stuart. 1966. “The Advanced Theory of Statistics - Volume 3.”
———. 1983. “The Advanced Theory of Statistics - Volume 3.”
Kent, JT, John Bibby, and KV Mardia. 1979. Multivariate Analysis. Academic Press Amsterdam.
Koenker, Roger, and Gilbert Bassett Jr. 1978.
“Regression Quantiles.” Econometrica: Journal of the Econometric Society, 33–50.
https://www.jstor.org/stable/1913643.
Kohavi, Ron. 1996.
“Scaling up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid.” In
Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 96:202–7.
http://robotics.stanford.edu/~ronnyk/nbtree.pdf.
Kokoska, Stephen, and Daniel Zwillinger. 2000. CRC Standard Probability and Statistics Tables and Formulae. CRC Press.
Korb, Kevin B, and Ann E Nicholson. 2011. Bayesian Artificial Intelligence. 2nd ed. CRC press.
Kotz, Samuel, Narayanaswamy Balakrishnan, Campbell B Read, Brani Vidakovic, and Norman L Johnson. 2005. Encyclopedia of Statistical Sciences, Volume 1. John Wiley & Sons.
Kotz, Samuel, N Balakrishnan, and Norman L Johnson. 2000. “Continuous Multivariate Distributions. Vol. 1. Models and Applications.” Wiley-Interscience, New York.
Kotz, Samuel, and Saralees Nadarajah. 2004.
Multivariate t-Distributions and Their Applications. Cambridge University Press.
https://doi.org/10.1017/CBO9780511550683.
Kourentzes, Nikolaos. 2023.
Tsutils: Time Series Exploration, Modelling and Forecasting.
https://CRAN.R-project.org/package=tsutils.
Krispin, Rami. 2023.
TSstudio: Functions for Time Series Analysis and Forecasting.
https://CRAN.R-project.org/package=TSstudio.
Kuhn, Max. 2022.
Caret: Classification and Regression Training.
https://CRAN.R-project.org/package=caret.
Kuhn, Max, and Ross Quinlan. 2021.
C50: C5.0 Decision Trees and Rule-Based Models.
https://CRAN.R-project.org/package=C50.
Kwiatkowski, Denis, Peter CB Phillips, Peter Schmidt, and Yongcheol Shin. 1992.
“Testing the Null Hypothesis of Stationarity Against the Alternative of a Unit Root: How Sure Are We That Economic Time Series Have a Unit Root?” Journal of Econometrics 54 (1-3): 159–78.
https://elischolar.library.yale.edu/cgi/viewcontent.cgi?article=2221&context=cowles-discussion-paper-series.
Lauritzen, Steffen L. 1981.
“Time Series Analysis in 1880: A Discussion of Contributions Made by TN Thiele.” International Statistical Review/Revue Internationale de Statistique, 319–31. https://doi.org/
https://doi.org/10.2307/1402616.
Lê, Sébastien, Julie Josse, and François Husson. 2008.
“FactoMineR: A Package for Multivariate Analysis.” Journal of Statistical Software 25 (1): 1–18.
https://doi.org/10.18637/jss.v025.i01.
Lee, Eun-Kyung. 2018.
“PPtreeViz: An R Package for Visualizing Projection Pursuit Classification Trees.” Journal of Statistical Software 83 (8): 1–30.
https://doi.org/10.18637/jss.v083.i08.
Li, Bing. 2018. Sufficient dimension reduction: Methods and applications with R. Chapman; Hall/CRC.
Ljung, Greta M, and George EP Box. 1978.
“On a Measure of Lack of Fit in Time Series Models.” Biometrika 65 (2): 297–303.
https://larrylisblog.net/WebContents/Financial%20Models/LjungBox.pdf.
Lloyd, Stuart P. 1957.
“Least Squares Quantization in PCM.” Tecnical Note at Bell Laboratories in 1957, Published After in IEEE Transactions on Information Theory in 1982 28 (2): 129–37.
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1056489.
López-de-Lacalle, Javier. 2024.
Tsoutliers: Detection of Outliers in Time Series.
https://CRAN.R-project.org/package=tsoutliers.
Maathuis, Marloes, Mathias Drton, Steffen Lauritzen, and Martin Wainwright. 2018.
Handbook of Graphical Models. CRC Press.
https://stat.ethz.ch/~maathuis/papers/Handbook.pdf.
MacQueen, James. 1967.
“Some Methods for Classification and Analysis of Multivariate Observations.” In
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1:281–97. 14. Oakland, CA, USA.
https://sci2s.ugr.es/keel/pdf/algorithm/congreso/1967-MacQueen-MSP.pdf.
Manzan, Sebastiano. 2003.
Essays in Nonlinear Economic Dynamics. Thela Thesis, Amsterdam.
https://hdl.handle.net/11245/1.219285.
Markus Kalisch, Martin Mächler, Diego Colombo, Marloes H. Maathuis, and Peter Bühlmann. 2012.
“Causal Inference Using Graphical Models with the R Package pcalg.” Journal of Statistical Software 47 (11): 1–26.
https://doi.org/10.18637/jss.v047.i11.
Marschinski, Robert, and Holger Kantz. 2002.
“Analysing the Information Flow Between Financial Time Series: An Improved Estimator for Transfer Entropy.” The European Physical Journal B-Condensed Matter and Complex Systems 30: 275–81.
https://link.springer.com/content/pdf/10.1140/epjb/e2002-00379-2.pdf.
McCullagh, Peter, and John Ashworth Nelder. 1989.
Generalized Linear Models.
Chapman Hall, London. 2nd ed.
http://www.utstat.toronto.edu/~brunner/oldclass/2201s11/readings/glmbook.pdf.
McCulloch, Warren S., and Walter Pitts. 1943.
“A Logical Calculus of the Ideas Immanent in Nervous Activity.” The Bulletin of Mathematical Biophysics 5 (4): 115–33.
https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf.
McLeod, Angus Ian, and Keith William Hipel. 1978.
“Preservation of the Rescaled Adjusted Range: 1. A Reassessment of the Hurst Phenomenon.” Water Resources Research 14 (3): 491–508.
https://www.stats.uwo.ca/faculty/mcleod/vita/pdf/RAR1.pdf.
McNeil, Donald R. 1977.
“Interactive Data Analysis: A Practical Primer.” (No Title).
https://archive.org/details/interactivedataa0000mcne.
Menzel, Uwe. 2022.
CCP: Significance Tests for Canonical Correlation Analysis (CCA).
https://CRAN.R-project.org/package=CCP.
Meyer, Paul L. 1970. Introductory Probability and Statistical Applications. 2nd ed. Addison-Wesley Publishing Company.
Milborrow, Stephen. 2020.
Rpart.plot: Plot ’Rpart’ Models: An Enhanced Version of ’Plot.rpart’.
https://CRAN.R-project.org/package=rpart.plot.
Modigliani, Franco, and Lucas Papademos. 1975.
“Targets for Monetary Policy in the Coming Year.” Brookings Papers on Economic Activity 1975 (1): 141–65.
http://pombo.free.fr/modipapa.pdf.
Moivre, Abraham de. 1730.
Miscellanea Analytica de Seriebus Et Quadraturis. J. Tonson & J. Watts.
https://archive.org/details/bub_gb_TFX1165yEc4C.
Montmort, Pierre Rémond de. 1708.
Essay d’analyse Sur Les Jeux de Hazard. J. Quillau.
https://archive.org/details/ldpd_6444894_000/mode/2up.
Moreira, Adriano, and Maribel Yasmina Santos. 2007. “Concave Hull: A k-Nearest Neighbours Approach for the Computation of the Region Occupied by a Set of Points.”
Moritz, Steffen, and Thomas Bartz-Beielstein. 2017.
“imputeTS: Time Series Missing Value Imputation in R.” The R Journal 9 (1): 207–18.
https://doi.org/10.32614/RJ-2017-009.
Murtagh, Fionn, and Pedro Contreras. 2011.
“Methods of Hierarchical Clustering.” CoRR abs/1105.0121.
http://arxiv.org/abs/1105.0121.
Murtagh, Fionn, and Pierre Legendre. 2014.
“Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion?” Journal of Classification 31: 274–95.
https://link.springer.com/content/pdf/10.1007/s00357-014-9161-z.pdf.
Nagarajan, Radhakrishnan, Marco Scutari, and Sophie Lèbre. 2013. “Bayesian Networks in R.” Springer 122: 125–27.
Nason, Guy P. 2001.
“Robust Projection Indices.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63 (3): 551–67.
https://www.jstor.org/stable/2680588.
———. 2006.
“On the Sum of t and Gaussian Random Variables.” Statistics & Probability Letters 76 (12): 1280–86.
https://doi.org/10.1016/j.spl.2006.01.006.
———. 2008. Wavelet methods in statistics with R. Springer.
Nelson, Daniel B. 1991.
“Conditional Heteroskedasticity in Asset Returns: A New Approach.” Econometrica: Journal of the Econometric Society, 347–70.
https://www.jstor.org/stable/pdf/2938260.pdf.
Nemenyi, Peter Bjorn. 1963. Distribution-Free Multiple Comparisons. Princeton University.
Neter, John, Michael H Kutner, Christopher J Nachtsheim, and William Wasserman. 2005.
Applied Linear Statistical Models. 5th ed. McGraw Hill/Irwin New York.
https://www.ime.unicamp.br/~dias/John%20Neter%20Applied%20linear%20regression%20models.pdf.
O’Hagan, Anthony, and Jonathan Forster. 1994. “Kendall’s Advanced Theory of Statistics: Volume 2B.” Bayesian Inference.
O’Hara-Wild, Mitchell, Rob Hyndman, and Earo Wang. 2024.
Fable: Forecasting Models for Tidy Time Series.
https://CRAN.R-project.org/package=fable.
Ossani, Paulo Cesar, and Marcelo Angelo Cirillo. 2021.
Projection Pursuit.
https://CRAN.R-project.org/package=Pursuit.
Pallmann, Philip. 2017.
Jocre: Joint Confidence Regions.
https://cran.r-project.org/package=jocre.
Pallmann, Philip, and Thomas Jaki. 2017.
“Simultaneous Confidence Regions for Multivariate Bioequivalence.” Statistics in Medicine 36 (29): 4585–4603.
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sim.7446.
Parnell, Andrew. 2021.
“Class 1: Including Covariates: ARIMAX Models.” https://andrewcparnell.github.io/.
https://andrewcparnell.github.io/TSDA/slides/day_3/class_1_ARIMAX.pdf.
Patel, Jagdish K., and Campbell B. Read. 1982. “Handbook of the Normal Distribution.” Marcel Dekker, New York.
Paul, Dr. Ranjit Kumar, and Dr. Md Yeasin. 2022.
TSLSTM: Long Short Term Memory (LSTM) Model for Time Series Forecasting.
https://CRAN.R-project.org/package=TSLSTM.
Paul, Ranjit Kumar, and Sandip Garai. 2021. “Performance Comparison of Wavelets-Based Machine Learning Technique for Forecasting Agricultural Commodity Prices.” Soft Computing 25 (20): 12857–73.
Paula, Gilberto Alvarenga. 2013.
Modelos de Regressão: Com Apoio Computacional. IME-USP S
ão Paulo.
https://www.ime.usp.br/~giapaula/texto_2013.pdf.
Paulino, Carlos Daniel Mimoso, Maria Antónia Amaral Turkman, and Bento Murteira. 2003.
Estatı́stica Bayesiana. Fundação Calouste Gulbenkian, Lisboa.
http://primo-pmtna01.hosted.exlibrisgroup.com/PUC01:PUC01:puc01000334509.
Pearl, Judea. 1988. “Probabilistic Reasoning in Intelligent Systems. Representation & Reasoning.” Morgan Kaufmann Publishers San Mateo, CA.
Pearson, Karl. 1901.
“On Lines and Planes of Closest Fit to Systems of Points in Space.” Philosophical Magazine 2 (11): 559–72.
http://pca.narod.ru/pearson1901.pdf.
Peña, Daniel, and Ruey S Tsay. 2021. Statistical Learning for Big Dependent Data. John Wiley & Sons.
Peng, Roger D. 2020.
“A Very Short Course on Time Series Analysis.” e-book.
https://bookdown.org/rdpeng/timeseriesbook/.
Perron, Pierre. 1988.
“Trends and Random Walks in Macroeconomic Time Series: Further Evidence from a New Approach.” Journal of Economic Dynamics and Control 12 (2-3): 297–332.
https://doi.org/10.1016/0165-1889(88)90043-7.
Persons, Warren Milton. 1919.
“Indices of Business Conditions.” The Review of Economics and Statistics, 5–107.
https://www.jstor.org/stable/i333288.
Peters, Andrea, and Torsten Hothorn. 2021.
Ipred: Improved Predictors.
https://CRAN.R-project.org/package=ipred.
Petris, Giovanni. 2009.
“Dlm: An r Package for Bayesian Analysis of Dynamic Linear Models.” https://cran.r-project.org/web/packages/dlm/vignettes/dlm.pdf.
———. 2010.
“An R Package for Dynamic Linear Models.” Journal of Statistical Software 36 (12): 1–16.
https://www.jstatsoft.org/v36/i12/.
Petris, Giovanni, Sonia Petrone, and Patrizia Campagnoli. 2009. Dynamic Linear Models with r. useR! Springer-Verlag, New York.
Pole, Andy, Mike West, and Jeff Harrison. 1994. Applied Bayesian Forecasting and Time Series Analysis. Chapman; Hall/CRC.
Pollock, DSG. 1999. “Time-Series Analysis, Signal Processing and Dynamics.” Academic Press.
Pourzanjani, Arya A, Richard M Jiang, and Linda R Petzold. 2017.
“Improving the Identifiability of Neural Networks for Bayesian Inference.” In
NIPS Workshop on Bayesian Deep Learning, 4:29.
http://bayesiandeeplearning.org/2017/papers/15.pdf.
Preparata, Franco P., and Se June Hong. 1977.
“Convex Hulls of Finite Sets of Points in Two and Three Dimensions.” Communications of the ACM 20 (2): 87–93.
https://dl.acm.org/doi/pdf/10.1145/359423.359430.
Quinlan, J. Ross. 1993.
C4.5: Programs for Machine Learning. Morgan
Kaufmann
Publishers,
Inc.,
San
Mateo,
CA.
https://books.google.com.br/books/about/C4_5.html?id=HExncpjbYroC.
Ranke, Johannes. 2022.
chemCal: Calibration Functions for Analytical Chemistry.
https://CRAN.R-project.org/package=chemCal.
Rényi, Alfréd. 1961.
“On Measures of Entropy and Information.” In
Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, 4:547–62. University of California Press.
https://static.renyi.hu/renyi_cikkek/1961_on_measures_of_entropy_and_information.pdf.
Ripley, Brian D. 2007. Pattern Recognition and Neural Networks. Cambridge University Press.
———. 2019.
Tree: Classification and Regression Trees.
https://CRAN.R-project.org/package=tree.
Robert Tibshirani. Original R port by Friedrich Leisch, Trevor Hastie &, Kurt Hornik, and Brian D. Ripley. Balasubramanian Narasimhan has contributed to the upgrading of the code. 2020.
Mda: Mixture and Flexible Discriminant Analysis.
https://CRAN.R-project.org/package=mda.
Rosenblatt, Frank. 1958.
“The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain.” Psychological Review 65 (6): 386.
https://psycnet.apa.org/fulltext/1959-09865-001.pdf.
Rousseeuw, Peter J, and L Kaufman. 1990.
“Finding Groups in Data.” Hoboken: Wiley Online Library.
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470316801.
Rousseeuw, Peter J, Ida Ruts, and John W Tukey. 1999.
“The Bagplot: A Bivariate Boxplot.” The American Statistician 53 (4): 382–87.
https://wis.kuleuven.be/statdatascience/robust/papers/1999/rousseeuwrutstukey-bagplot-amerstat-1999-bw.pdf.
Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams. 1985. “Learning Internal Representations by Error Propagation.” California Univ San Diego La Jolla Inst for Cognitive Science.
Ryan, Jeffrey A., and Joshua M. Ulrich. 2024.
Xts: eXtensible Time Series.
https://CRAN.R-project.org/package=xts.
Said, Said E, and David A Dickey. 1984.
“Testing for Unit Roots in Autoregressive-Moving Average Models of Unknown Order.” Biometrika 71 (3): 599–607.
https://www.larrylisblog.net/WebContents/Financial%20Models/ADFTest.pdf.
Sax, Christoph, and Dirk Eddelbuettel. 2018.
“Seasonal Adjustment by X-13ARIMA-SEATS in R.” Journal of Statistical Software 87 (11): 1–17.
https://doi.org/10.18637/jss.v087.i11.
Schapire, Robert E., and Yoav Freund. 1995. “A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting.” In Second European Conference on Computational Learning Theory, 23–37.
Schramm, Michael. 2020.
Tbrf: Time-Based Rolling Functions.
https://CRAN.R-project.org/package=tbrf.
Schuirmann, Donald J. 1987.
“A Comparison of the Two One-Sided Tests Procedure and the Power Approach for Assessing the Equivalence of Average Bioavailability.” Journal of Pharmacokinetics and Biopharmaceutics 15: 657–80.
https://link.springer.com/content/pdf/10.1007/BF01068419.pdf.
Schuster, Arthur. 1898.
“On the Investigation of Hidden Periodicities with Application to a Supposed 26 Day Period of Meteorological Phenomena.” Terrestrial Magnetism 3 (1): 13–41.
https://doi.org/10.1029/TM003i001p00013.
Scutari, Marco. 2010.
“Learning Bayesian Networks with the bnlearn R Package.” Journal of Statistical Software 35 (3): 1–22.
https://doi.org/10.18637/jss.v035.i03.
Seabold, Skipper, and Josef Perktold. 2010.
“Statsmodels: Econometric and Statistical Modeling with Python.” In
9th Python in Science Conference.
https://www.statsmodels.org/.
Shannon, Claude E. 1948.
“A Mathematical Theory of Communication.” The Bell System Technical Journal 27 (3): 379–423.
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.
Shephard, Neil. 1996.
“Statistical Aspects of ARCH and Stochastic Volatility.” In
Time Series Models: In Econometrics, Finance and Other Fields, 1–68. Springer-Science+Business Media, B.V.
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=59c8b90f39410447614bcebbfedd985c4bcc59b2.
Siebert, Julien, Janek Groß, and Christof Schroth. 2021.
“A Systematic Review of Python Packages for Time Series Analysis.” https://siebert-julien.github.io/time-series-analysis-python/.
Sievert, Carson. 2020.
Interactive Web-Based Data Visualization with r, Plotly, and Shiny. Chapman; Hall/CRC.
https://plotly-r.com.
Signorell, Andri. 2024.
DescTools: Tools for Descriptive Statistics.
https://CRAN.R-project.org/package=DescTools.
Sokal, Robert R, and F James Rohlf. 1962.
“The Comparison of Dendrograms by Objective Methods.” Taxon, 33–40.
https://www.jstor.org/stable/pdf/1217208.pdf.
Sparapani, Rodney, Charles Spanbauer, and Robert McCulloch. 2021.
“Nonparametric Machine Learning and Efficient Computation with Bayesian Additive Regression Trees: The BART r Package.” Journal of Statistical Software 97 (1): 1–66.
https://www.jstatsoft.org/article/view/v097i01.
Statisticat, and LLC. 2021.
LaplacesDemon: Complete Environment for Bayesian Inference.
https://cran.r-project.org/web/packages/LaplacesDemon/LaplacesDemon.pdf.
Stigler, Matthieu. 2019.
“Nonlinear time series in R: Threshold cointegration with tsDyn.” In
Handbook of Statistics, Volume 41, edited by Hrishikesh D. Vinod and C. R. Rao, 42:229–64. Elsevier.
https://doi.org/10.1016/bs.host.2019.01.008.
Stigler, Stephen M. 1980. “Stigler’s Law of Eponymy.” Transactions of the New York Academy of Sciences 39 (1 Series II): 147–57.
Stratonovich, R. L. 1957.
“A Method for the. Computation of Quantum Distribution Functions (Em Russo).” In
Reports of the Academy of Sciences, 115:1097–1100. 6. Russian Academy of Sciences.
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=22296&option_lang=eng.
Sugiura, Nariaki. 1978.
“Further Analysis of the Data by Akaike’s Information Criterion and the Finite Corrections: Further Analysis of the Data by Akaike’s.” Communications in Statistics-Theory and Methods 7 (1): 13–26.
https://doi.org/10.1080/03610927808827599.
Svetunkov, Ivan. 2022.
“Statistics for Business Analytics.” Lecture notes. OpenForecast.
https://openforecast.org/sba/.
———. 2023.
Forecasting and Analytics with the Augmented Dynamic Adaptive Model (ADAM). Chapman; Hall/CRC.
https://doi.org/10.1201/9781003452652.
———. 2024a.
Greybox: Toolbox for Model Building and Forecasting.
https://CRAN.R-project.org/package=greybox.
———. 2024b.
Smooth: Forecasting Using State Space Models.
https://CRAN.R-project.org/package=smooth.
Swerling, Peter. 1958.
“Optimum Linear Estimation for Random Processes as the Limit of Estimates Based on Sampled Data.” In
1958 IRE Wescon Convention Record, 158–63. 29.
https://apps.dtic.mil/sti/tr/pdf/AD0606275.pdf.
Tattar, Prabhanjan N., Suresh Ramaiah, and Bangalore G. Manjunath. 2016.
A Course in Statistics with R. John Wiley & Sons.
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119152743.
Taylor, James W. 2003.
“Short-Term Electricity Demand Forecasting Using Double Seasonal Exponential Smoothing.” Journal of the Operational Research Society 54 (8): 799–805.
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=44c00b621735911ce7a889f9ce0267393973b37d.
———. 2008.
“An Evaluation of Methods for Very Short-Term Load Forecasting Using Minute-by-Minute British Data.” International Journal of Forecasting 24 (4): 645–58.
https://ora.ox.ac.uk/objects/uuid:3efb634c-9f14-428a-9782-3e5e34686728/files/m0ed20837a9bc4028fbb9301719a7905d.
———. 2010.
“Triple Seasonal Methods for Short-Term Electricity Demand Forecasting.” European Journal of Operational Research 204 (1): 139–52.
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=c106c17601226147c2db7a05b64bb146a1d8f6a0.
Taylor, Sean J., and Ben Letham. 2023.
Prophet: Automatic Forecasting Procedure.
https://github.com/facebook/prophet.
Taylor, Sean J., and Benjamin Letham. 2018.
“Forecasting at Scale.” The American Statistician 72 (1): 37–45.
https://peerj.com/preprints/3190/.
Therneau, Terry, and Beth Atkinson. 2019.
Rpart: Recursive Partitioning and Regression Trees.
https://CRAN.R-project.org/package=rpart.
Thiele, Thorvald Nicolai. 1880.
Om Anvendelse Af Mindste Kvadraters Methode i Nogle Tilfaelde, Hvor En Komplikation Af Visse Slags Uensartede Tilfaeldige Fejlkilder Giver Fejlene En" Systematisk" Karakter. B. Lunos Kgl. Hof.-Bogtrykkeri.
https://archive.org/details/surlacompensati00thiegoog.
Thomson, David J. 1990.
“Time Series Analysis of Holocene Climate Data.” Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 330 (1615): 601–16.
doi:10.1098/rsta.1990.0041.
Thorndike, Edward Lee. 1939. Your City. Harcourt Brace College Publishers.
Thorndike, Robert L. 1953.
“Who Belongs in the Family?” Psychometrika 18 (4): 267–76.
https://link.springer.com/content/pdf/10.1007%2FBF02289263.pdf.
Thurman, Walter N, Mark E Fisher, et al. 1988.
“Chickens, Eggs, and Causality, or Which Came First.” American Journal of Agricultural Economics 70 (2): 237–38.
http://sungpark.net/ChickensEggs.pdf.
Tibshirani, Robert, Guenther Walther, and Trevor Hastie. 2001.
“Estimating the Number of Clusters in a Data Set via the Gap Statistic.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63 (2): 411–23.
http://web.stanford.edu/~hastie/Papers/gap.pdf.
Tong, Yung L. 1990. The Multivariate Normal Distribution. Springer-Verlag New York Inc.
Trapletti, Adrian, and Kurt Hornik. 2024.
Tseries: Time Series Analysis and Computational Finance.
https://CRAN.R-project.org/package=tseries.
Tsanas, Athanasios, and Angeliki Xifara. 2012.
“Accurate Quantitative Estimation of Energy Performance of Residential Buildings Using Statistical Machine Learning Tools.” Energy and Buildings 49: 560–67.
http://people.maths.ox.ac.uk/tsanas/Preprints/ENB2012.pdf.
Tsay, Ruey S. 2014.
Multivariate time series analysis: with R and financial applications. John Wiley & Sons.
http://past.rinfinance.com/agenda/2013/talk/RueyTsay.pdf.
Tsay, Ruey S., and Rong Chen. 2019. Nonlinear Time Series Analysis. John Wiley & Sons.
Tsay, Ruey S., David Wood, and Jon Lachmann. 2022.
MTS: All-Purpose Toolkit for Analyzing Multivariate Time Series (MTS) and Estimating Multivariate Volatility Models.
https://CRAN.R-project.org/package=MTS.
Tseng, Yu-Ling. 2002.
“Optimal Confidence Sets for Testing Average Bioequivalence.” Test 11 (1): 127–41.
https://link.springer.com/content/pdf/10.1007/BF02595733.pdf.
Tukey, John W. 1977. Exploratory Data Analysis. Addison-Wesley Publishing Company.
U.S. Census Bureau. 2023.
X-13ARIMA-SEATS Reference Manual (version 1.1). Center for Statistical Research & Methodology.
https://www2.census.gov/software/x-13arima-seats/x13as/windows/documentation/docx13as.pdf.
Van Der Maaten, Laurens, Eric Postma, Jaap Van den Herik, et al. 2009.
“Dimensionality Reduction: A Comparative.” J Mach Learn Res 10 (66-71): 13.
https://lvdmaaten.github.io/publications/papers/TR_Dimensionality_Reduction_Review_2009.pdf.
Vapnik, Vladimir. 1995. The Nature of Statistical Learning Theory. 1st ed. Springer Science & Business Media.
———. 2000. The Nature of Statistical Learning Theory. 2nd ed. Springer Science & Business Media.
Vaughan, Davis. 2023.
Slider: Sliding Window Functions.
https://CRAN.R-project.org/package=slider.
Veenstra, Justin Q. 2013.
“Persistence and Anti-Persistence: Theory and Software.” PhD thesis, The University of Western Ontario (Canada).
https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=2414&context=etd.
Venables, W. N., and B. D. Ripley. 2002.
Modern Applied Statistics with s. Fourth. New York: Springer.
https://www.stats.ox.ac.uk/pub/MASS4/.
Virtanen, Pauli, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, et al. 2020.
“SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.” Nature Methods 17: 261–72.
https://doi.org/10.1038/s41592-019-0686-2.
Vrontos, Ioannis D, Petros Dellaportas, and Dimitris N Politis. 2000.
“Full Bayesian Inference for GARCH and EGARCH Models.” Journal of Business & Economic Statistics 18 (2): 187–98.
https://www.tandfonline.com/doi/pdf/10.1080/07350015.2000.10524861?casa_token=gESFQI83c2sAAAAA:s-MSp0-EZZzxt_nhFIMZe4rmzCbjRuf380wfFAdo9Gt-XpmLhjNQGJbtkH3Ph9CuMS4BkJOmVqZTFg.
Wang, Chunnan, Xingyu Chen, Chengyue Wu, and Hongzhi Wang. 2022.
“AutoTS: Automatic Time Series Forecasting Model Design Based on Two-Stage Pruning.” https://arxiv.org/abs/2203.14169.
Wang, Earo, Dianne Cook, and Rob J Hyndman. 2020b.
“A New Tidy Data Structure to Support Exploration and Modeling of Temporal Data.” Journal of Computational and Graphical Statistics 29 (3): 466–78.
https://doi.org/10.1080/10618600.2019.1695624.
———. 2020a.
“A New Tidy Data Structure to Support Exploration and Modeling of Temporal Data.” Journal of Computational and Graphical Statistics 29 (3): 466–78.
https://doi.org/10.1080/10618600.2019.1695624.
Wang, Zhendong, and Xingzhong Xu. 2020.
“Testing High Dimensional Covariance Matrices via Posterior Bayes Factor.” Journal of Multivariate Analysis 181: 104674.
https://www.sciencedirect.com/science/article/pii/S0047259X20302554.
Ward Jr, Joe H. 1963.
“Hierarchical Grouping to Optimize an Objective Function.” Journal of the American Statistical Association 58 (301): 236–44.
https://www.proquest.com/openview/c1f3e8829e8351e9c2a1c5e51778c6cf/1?pq-origsite=gscholar&cbl=18750&diss=y.
Wechsler, Sergio. 1993.
“Exchangeability and Predictivism.” Erkenntnis, 343–50.
https://www.jstor.org/stable/20012482.
Weihs, Claus, Uwe Ligges, Karsten Luebke, and Nils Raabe. 2005. “klaR Analyzing German Business Cycles.” In Data Analysis and Decision Support, edited by D. Baier, R. Decker, and L. Schmidt-Thieme, 335–43. Berlin: Springer-Verlag.
West, Mike, and Jeff Harrison. 1989.
Bayesian Forecasting and Dynamic Models. Springer Science & Business Media.
https://books.google.com.br/books/about/Bayesian_Forecasting_and_Dynamic_Models.html?id=NmfaBwAAQBAJ&redir_esc=y.
———. 2006. Bayesian Forecasting and Dynamic Models. Springer Science & Business Media.
Whittaker, Joe. 1990. Graphical Models in Applied Multivariate Statistics. Wiley Publishing.
Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D’Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019.
“Welcome to the tidyverse.” Journal of Open Source Software 4 (43): 1686.
https://doi.org/10.21105/joss.01686.
Wickham, Hadley, and Lisa Stryjewski. 2011.
“40 Years of Boxplots.” The American Statistician, 17.
https://vita.had.co.nz/papers/boxplots.html.
Wickramasinghe, Indika, and Harsha Kalutarage. 2020.
“Naive Bayes: Applications, Variations and Vulnerabilities: A Review of Literature with Code Snippets for Implementation.” Soft Computing 25 (3): 2277–93.
https://link.springer.com/article/10.1007/s00500-020-05297-6.
Wilkinson, GN, and CE Rogers. 1973.
“Symbolic Description of Factorial Models for Analysis of Variance.” Journal of the Royal Statistical Society Series C: Applied Statistics 22 (3): 392–99.
https://www.jstor.org/stable/2346786.
Winters, Peter R. 1960.
“Forecasting Sales by Exponentially Weighted Moving Averages.” Management Science 6 (3): 324–42.
https://doi.org/10.1287/mnsc.6.3.324.
Wishart, John. 1928.
“The Generalised Product Moment Distribution in Samples from a Normal Multivariate Population.” Biometrika, 32–52.
https://www.jstor.org/stable/pdf/2331939.pdf.
Witten, Ian H., and Eibe Frank. 2005. Data Mining: Practical Machine Learning Tools and Techniques. 2nd ed. San Francisco: Morgan Kaufmann.
Wold, Herman. 1938.
“A Study in the Analysis of Stationary Time Series.” PhD thesis, Almqvist & Wiksell.
https://archive.org/details/in.ernet.dli.2015.261682.
Woods, Hubert, Harold H Steinour, and Howard R Starke. 1932.
“Effect of Composition of Portland Cement on Heat Evolved During Hardening.” Industrial & Engineering Chemistry 24 (11): 1207–14.
https://pubs.acs.org/doi/pdf/10.1021/ie50275a002.
Wuertz, Diethelm, Tobias Setz, and Yohan Chalabi. 2024.
fNonlinear: Rmetrics - Nonlinear and Chaotic Time Series Modelling.
https://CRAN.R-project.org/package=fNonlinear.
Xu, Haichao, and Xingpao Suo. 2023.
“A New Type of Window Functions Constructed with Exponential Function.” https://arxiv.org/abs/2312.15267.
Yule, G Udny. 1921.
“On the Time-Correlation Problem, with Especial Reference to the Variate-Difference Correlation Method.” Journal of the Royal Statistical Society 84 (4): 497–537.
https://doi.org/10.2307/2341101.
Zabala, F. J. 2009.
“Desempate Técnico.” PhD thesis,
USP -
Universidade de
São
Paulo.
https://www.teses.usp.br/teses/disponiveis/45/45133/tde-01032021-140004/.
Zeileis, Achim. 2006.
“Implementing a Class of Structural Change Tests: An Econometric Computing Approach.” Computational Statistics & Data Analysis 50 (11): 2987–3008.
https://doi.org/10.1016/j.csda.2005.07.001.
Zeileis, Achim, and Gabor Grothendieck. 2005a.
“Zoo: An S3 Class and Methods for Indexed Totally Ordered Observations.” https://cran.r-project.org/web/packages/zoo/vignettes/zoo.pdf.
———. 2005b.
“Zoo: S3 Infrastructure for Regular and Irregular Time Series.” Journal of Statistical Software 14 (6): 1–27.
https://doi.org/10.18637/jss.v014.i06.
Zeileis, Achim, and Torsten Hothorn. 2002.
“Diagnostic Checking in Regression Relationships.” R News 2 (3): 7–10.
https://CRAN.R-project.org/doc/Rnews/.
Zeileis, Achim, Christian Kleiber, Walter Krämer, and Kurt Hornik. 2003.
“Testing and Dating of Structural Changes in Practice.” Computational Statistics & Data Analysis 44 (1–2): 109–23.
https://doi.org/10.1016/S0167-9473(03)00030-6.
Zeileis, Achim, Friedrich Leisch, Kurt Hornik, and Christian Kleiber. 2002.
“Strucchange: An r Package for Testing for Structural Change in Linear Regression Models.” Journal of Statistical Software 7 (2): 1–38.
https://doi.org/10.18637/jss.v007.i02.
Zhang, Harry. 2004.
“The Optimality of Naive Bayes.” American Association for Artificial Intelligence 1 (2): 3.
http://www.cs.unb.ca/~hzhang/publications/FLAIRS04ZhangH.pdf.
Zhang, Huajie, and Charles X Ling. 2001.
“Learnability of Augmented Naive Bayes in Nominal Domains.” A A 1 (2): 3.
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d36671397f0bb927036de3b56cd605e2227b2043.
Zhao, Junhan, Xiang Liu, Chen Guo, Zhenyu Cheryl Qian, and Yingjie Victor Chen. 2020.
“Phoenixmap: An Abstract Approach to Visualize 2D Spatial Distributions.” CoRR abs/2002.00732.
https://arxiv.org/abs/2002.00732.